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Abstract We show that it makes sense to speak of the Frobenius manifold attached to a
convenient and nondegenerate Laurent polynomial.

1 Introduction

This paper is the last of a series devoted to the construction of Frobenius structures on the
base of a deformation of a convenient and nondegenerate Laurent polynomial f , defined on
the torus U = (C∗)n . The motivations and the general setting are given in [4] where such
a construction (an imitation of the one given by Saito [14] in the case of germs) is done
starting with a universal unfolding of f . Two major difficulties arise: first, the analysis of the
Fourier–Laplace transform of the Brieskorn lattice of this unfolding leads to a transcendent
process of analytization in the variables of the polynomial, because of the critical points
vanishing at infinity of the deformed polynomials in the unfolding (see [4, Sect. 2]). Second,
the universality condition means that the Kodaira Spencer map is an isomorphism and it is
not known, unlike germs, if any unfolding is induced by a universal one. Therefore, two
different (universal) unfoldings could produce two different Frobenius structures which are
not easy to compare.

In some cases, these difficulties are overcome: in [5], examples are given using the fact
that semisimple and simply connected Frobenius manifolds are determined by a finite set
of numbers, and this is a result of Dubrovin [6]. More generally, we have explained in [2]
how one can construct, using a result of Hertling and Manin [8], Frobenius structures which
are determined by a restricted set of algebraic data (the “initial conditions”). We point out
the fact that this construction simplifies greatly the one in [4] because we only consider
deformations of f that do not produce critical points vanishing at infinity. However, these
initial conditions are not unique and, starting from f , it is a priori possible to construct several
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626 A. Douai

Frobenius structures. The goal of this paper is to compare them, in fact to show that they
are all isomorphic. Finally, we attach a canonical Frobenius structure, which is determined
by a restricted set of algebraic data, to (almost) any convenient and nondegenerate Laurent
polynomial. The point is that our initial conditions are in essence as simple to compute as
the ones in [6]. This is especially useful if one wants to compare the Frobenius structures
constructed in this paper with the ones coming from different fields of mathematics and
which are also determined by a restricted set of data: it is enough to identify these data and
to compare them. This approach has been used in [1].

Let us precise the situation: let F : U × C
r → C be the subdiagram deformation of f

defined by

F(u, x) = f (u)+
r∑

i=1

xi gi (u),

where the gi ’s are some Laurent polynomials (we put x =(x1, . . . , xr ) and u = (u1, . . . , un)).
Here, subdiagram means that the Laurent polynomials g1, . . . , gr are linear combinations
of monomials ua1

1 . . . uan
n where a = (a1, . . . , an) belongs to the interior of the Newton

polyhedron of f (we will also say that g1, . . . , gr are subdiagram Laurent polynomials). We
attach to F a Frobenius type structure on A

r , that is a t-uple

F = (Ar , E,�, R0, R∞,�, g),

where E is a free C[x]-module,� a Higgs field, � a flat connection on E , g a metric, R0 and
R∞ two endomorphisms of E , these different objects satisfying some natural compatibility
relations. This is the initial condition and it is obtained by solving the Birkhoff problem for the
Brieskorn lattice of F (see Sect. 4). Once F is fixed, and up to the existence of a pre-primitive
and homogeneous form, that is a �-flat sectionω of E satisfying an injectivity condition (IC),
a generation condition (GC) and a homogeneity condition (H), we can, following Hertling
and Manin [8], unfold F and equip (Cµ, 0) with a Frobenius structure where µ is the global
Milnor number of f . Notice that the unfolding process given in loc. cit. is analytic but now
this affects only the parameters of the deformation.

In this paper, we will take for ω the class of the volume form du1
u1

∧ · · · ∧ dun
un

in E , the
reason being that ω is the �-flat extension to E of the canonical primitive form attached
to f by [4, Sect. 4.d]. Then ω satisfies the condition (IC) at least if the gi ’s are C-linearly
independent, in which case we will say that the subdiagram deformation F is injective, and
condition (H) follows from the homogeneity of the canonical primitive form attached to f
by loc. cit. Let us have a closer look at (GC): ω will satisfy (GC) if any element of A f ,
the Jacobi algebra of f , can be written as the class of a polynomial in g1, . . . , gr , f with
coefficients in C. Of course, this will be true if any element of A f can be written as the
class of a polynomial in g1, . . . , gr with coefficients in C, in which case we will say that
(g1, . . . , gr ) is a lattice in A f , or if any element of A f can be written as the class of a
polynomial in f with coefficients in C. The latter case occurs when the multiplication by f
on A f is regular, in particular if the critical values of f are all distinct: this is the framework
of Dubrovin [6]. We focus now on the former case: let (g1, . . . , gr ) be a lattice in A f . Thenω
is pre-primitive and homogeneous but the desired Frobenius structure will depend a priori on
the lattice (g1, . . . , gr ): two different lattices (made with subdiagram Laurent polynomials)
could give two distinct Frobenius manifolds. We show:

Theorem 1 Let f be a convenient and nondegenerate Laurent polynomial, µ its global
Milnor number. Assume that there exist subdiagram Laurent polynomials g1, . . . , gr such
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A canonical Frobenius structure 627

that (g1, . . . , gr ) is a lattice in A f . Then the construction of Hertling and Manin equips
(Cµ, 0) with a canonical Frobenius structure. Up to isomorphism, this Frobenius structure
does not depend on the lattice (g1, . . . , gr ).

Theorem 1 includes also the regular case: if moreover the multiplication by f is regular, it
follows from the discussion above that there are at least two ways to construct Frobenius
structures. They will be isomorphic. Theorem 1 can be used to define canonical CDV and
t t∗ structures (see [7,13]) attached to a convenient and nondegenerate Laurent polynomial.

Up to a slightly stronger generation condition, we can give a global counterpart of
Theorem 1. Let F as above be an injective subdiagram deformation of f , AF its Jacobi
algebra, which is a C[x]-module of finite type. We will say that ω satisfies (GC)gl for F if
(g1, . . . , gr ) is a lattice in AF , that is if any element of AF can be written as (the class of) a
polynomial in g1, . . . , gr with coefficients in C[x].

Theorem 2 Let a ∈ C
r and assume that ω satisfies (GC)gl for F. Then,

(1) the canonical Frobenius structure attached by Theorem 1 to the convenient and nonde-
generate Laurent polynomial Fa := F(., a) is obtained by an analytic continuation of
the one attached to f ,

(2) for any injective and subdiagram deformation G of f , the canonical Frobenius structure
attached by Theorem 1 to the convenient and nondegenerate Laurent polynomial Ga :=
G(., a) is obtained by an analytic continuation of the one attached to f .

Theorems 1 and 2 are detailed in Sect. 7.
This paper is organized as follows: in Sect. 2, we recall the basic facts about the Frobenius

type structures and their deformations. In Sect. 3, we explain the construction of Hertling and
Manin. Then we apply all this to a geometric situation: we define the canonical Frobenius
type structures attached to a subdiagram deformation of a convenient and nondegenerate
Laurent polynomial (Sect. 4) and the canonical pre-primitive form (Sect. 5). In Sect. 6 we
study the existence of universal deformations of the canonical Frobenius type structure.
We show in particular that one can define global universal deformations along the space of
the subdiagram monomials. Sect. 7 is devoted to the proof of Theorems 1 and 2. Last, we
summarize the results and give our recipe to construct Frobenius manifolds in Sect. 8. We
end with an example.
Notations. In this paper we will put U = (C∗)n , u = (u1, . . . , un), x = (x1, . . . , xr ),

K = C[u, u−1] = C[u1, . . . , un, u−1
1 , . . . , u−1

n ]

and

du

u
= du1

u1
∧ · · · ∧ dun

un
.

If f is a Laurent polynomial, A f will denote its Jacobi algebra

K(
∂ f
∂u1
, . . . ,

∂ f
∂un

) .
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628 A. Douai

2 Frobenius type structure

2.1 Frobenius type structure on a complex analytic manifold

Let M be a complex analytic manifold. Let us be given a t-uple

(M, E,�, R0, R∞,�, g),

where

• E is a locally free OM -module,
• R0 and R∞ are OM -linear endomorphisms of E ,
• � : E → �1

M ⊗ E is an OM -linear map,
• g is a metric on E , i.e. a OM -bilinear form, symmetric and nondegenerate,
• � is a connection on E .

Definition 2.1.1 The t-uple

(M, E,�, R0, R∞,�, g)

is a Frobenius type structure on M if the following relations are satisfied:

�2 = 0,�(R∞) = 0,� ∧� = 0, [R0,�] = 0,

�(�) = 0,�(R0)+� = [�, R∞],
�(g) = 0,�∗ = �, R∗

0 = R0, R∞ + R∗∞ = r I d

for a suitable constant r , where ∗ denotes the adjoint with respect to g.

We will use systematically the following lemma, which is a direct consequence of the defi-
nition:

Lemma 2.1.2 Let (M, E,�, R0, R∞,�, g) be a Frobenius type structure on M. Then:

(1) the connection � is flat.
(2) Let ε be a �-flat basis of E, C = ∑

i C (i)dxi (resp. B0, B∞) the matrix of� (resp. R0,
R∞) in this basis. One has, for all i and for all j ,

∂C (i)

∂x j
= ∂C ( j)

∂xi
,

[C (i),C ( j)] = 0,

[B0,C (i)] = 0,

C (i) + ∂B0

∂xi
= [B∞,C (i)],

C (i)∗ = C (i), B∗
0 = B0, B∞ + B∗∞ = r I

(I is the identity matrix). The matrix B∞ is constant.

Remark 2.1.3 (1) A Frobenius type structure on a point is a t-uple (E, R0, R∞, g) where
E is a finite dimensional C-vector space, R0 and R∞ are endomorphisms of E , and g
is a bilinear, symmetric and nondegenerate form on E such that

R∗
0 = R0, R∞ + R∗∞ = r I d

for a suitable constant r ∈ C. As above, ∗ denotes the adjoint with respect to g.
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A canonical Frobenius structure 629

(2) We will also consider Frobenius type structures on A
r that is t-uples

(Ar , E,�, R0, R∞,�, g),

where E is a free C[x]-module. The objects �, R0, R∞, � and g are defined as above
(replace OM -linear by C[x]-linear) and satisfy the relations of Definition 2.1.1.

2.2 Construction of Frobenius type structures

2.2.1 From Frobenius type structures to flat connections

Let M be a complex analytic manifold and E be locally free OM -module. Let π : P
1 × M →

M be the projection, E := π∗E and ∇ the meromorphic connection on E defined by

∇ = π∗ � +τπ∗�− (τ R0 + R∞)
dτ

τ
,

where τ is the coordinate on the chart centered at infinity. Then ∇ is flat if and only if the
t-uple

(M, E,�, R0, R∞,�)

is a Frobenius type structure on M (without metric).

2.2.2 From flat connections to Frobenius type structures

Conversely, a trivial bundle E on P
1 × M equipped with a flat connection ∇, with logarithmic

poles along {∞} × M and with poles of order 1 along {0} × M , enables us to construct a
Frobenius type structure (without metric)

(M, E,�, R0, R∞,�),

where E := E|{0}×M (see for instance [12, Chap. VII] for the details). One can also get in
this way a Frobenius type structure

(M, E,�, R0, R∞,�, g)

with metric (see [12, Chap. VI, 2.b]). All Frobenius type structures that we will consider are
constructed in this way (see Sect. 4.3).

2.3 Deformations of Frobenius type structures

Since one knows how to define the pullback of a bundle equipped with a connection, one can
define, using Sect. 2.2, the pullback of a Frobenius type structure: if ψ : N → M where M
and N are two complex analytic manifolds and if F is a Frobenius type structure on M then
ψ∗F is a Frobenius type structure on N .

Definition 2.3.1 (1) If ψ is a closed immersion, one says that F is a deformation of ψ∗F .
(2) Two deformations of a same Frobenius type structure are isomorphic if one comes

from the other by a base change inducing an isomorphism on the corresponding tangent
bundles.

(3) Let F be a Frobenius type structure on N . A deformation F̃ of F is universal if any
other deformation of F comes from F̃ by a unique base change, inducing the identity
on N .

If it exists, a universal deformation is unique, up to isomorphism.
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630 A. Douai

3 Hertling and Manin’s theorem. Construction of Frobenius manifolds

3.1 Pre-primitive forms

3.1.1 The analytic case

Let F = (M, E,�, R0, R∞,�, g) be a Frobenius type structure on M . Suppose first that M
is a punctual germ of a complex analytic manifold. Let ω be a �-flat section of E .

Definition 3.1.1 The period map attached to ω is the map

ϕω : 
M → E, (1)

ξ 	→ −�ξ(ω). (2)

This period map can be seen as a �-flat differential form: in coordinates,

ϕω = −
r∑

i=1

�∂xi
(ω)dxi .

Assume moreover that ω = ε1 where ε = (ε1, . . . , εµ) is a �-flat basis of E . With the
notations of Lemma 2.1.2, one then gets

ϕω = −
µ∑

j=1

(
r∑

i=1

C (i)
j1 (x)dxi

)
ε j .

Lemma 2.1.2 shows also that the differential form
∑r

i=1 C (i)
j1 (x)dxi is d-closed : let � j1 be

the function such that � j1(0) = 0 and d� j1(x) = ∑r
i=1 C (i)

j1 (x)dxi . Define

χεω : M → E, (3)

x 	→
µ∑

j=1

� j1(x)ε j . (4)

The basis ε being fixed, χεω can also be seen as a map

χεω : M → C
µ (5)

x 	→ (�11(x), . . . , �µ1(x)) (6)

Definition 3.1.2 χεω is the primitive map attached to the �-flat section ω and to the basis ε.

Remark 3.1.3 Up to isomorphism, the map χεω does not depend on the basis ε. We will
omit the index ε : there will be no confusion because we will always work with M. Saito’s
canonical basis (see Sect. 4.3).

Let m be the maximal ideal of OM . The index o will denote the operation “modulo m”.

Definition 3.1.4 Let ω be a �-flat section of E . One says that ω is pre-primitive if

(GC) ωo and its images under the iteration of the maps Ro
0 and�o

ξ (for all ξ ) generate Eo,
(I C) ϕo

ω : 
o
M → Eo is injective.
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A canonical Frobenius structure 631

Remark 3.1.5 (1) If M = {point} the condition (IC) is empty. Assume moreover that R0

is regular (i.e. its characteristic polynomial is equal to its minimal polynomial): there
exists ω such that

ω, R0(ω), . . . , Rµ−1
0 (ω)

is a basis of E over C and ω is thus pre-primitive.
(2) If (GC) is satisfied, it is also satisfied in the neighborhood of 0: E is then generated by

ω and its images under iteration of the maps R0 and �ξ (for all ξ ).

Let now M be a simply connected complex analytic manifold. The period map attached
to the �-flat section ω is the OM -linear map defined as in Definition 3.1.1. One defines also
the primitive map χεω, attached to the �-flat section ω and to the basis ε : since M is simply
connected, χεω is holomorphic on M . The definition of the pre-primitive forms depends now
on the origin: if a ∈ M , ma will denote the maximal ideal of OM,a and the index a the
operation “modulo ma”.

Definition 3.1.6 Let ω be a �-flat section of E , a ∈ M . We will say that ωa satisfies (GC)
if ωa and its images under the iteration of the maps Ra

0 and �a
ξ (for all ξ ) generate Ea and

that ωa satisfies (I C) if

ϕa
ω : 
a

M → Ea

is injective. One says that ω is pre-primitive for the origin a if ωa satisfies (GC) and (I C).

3.1.2 The algebraic case

Let F = (Ar , E,�, R0, R∞,�, g) be a Frobenius type structure on A
r . The period map

attached to ω is now a C[x]-linear map, defined on the Weyl algebra A
r (C) = C[x]〈∂x 〉,

ϕω : A
r (C) → E, (7)

ξ 	→ −�ξ(ω). (8)

The index a will denote the operation “modulo (x − a)”.

Definition 3.1.7 Let ω be a �-flat section of E .

(1) We will say that ω satisfies the condition (GC)gl if ω and its images under the iteration
of the maps R0 and �ξ (for all ξ ) generate the C[x]-module E and that ω satisfies the
condition (I C)gl if

ϕω : A
r (C) → E

is injective. We will say thatω is globally pre-primitive ifω satisfies (GC)gl and (I C)gl .
(2) Let a ∈ A

r . We will say thatωa satisfies (GC) ifωa and its images under the iteration of
the maps Ra

0 and�a
ξ (for all ξ ) generate Ea and that ωa satisfies (I C) if ϕa

ω is injective.
We will say that ω is pre-primitive for the origin a if ωa satisfies (GC) and (I C).

Remark 3.1.8 (Analytization) A Frobenius type structure F on A
r gives, after analytization,

a Frobenius type structure

F
an = (Cr , Ean,�an, Ran

0 , Ran∞,�an, gan)

on C
r . Notice that Ean is canonically trivialized by a basis of (global) �-flat sections. A

globally pre-primitive section ω of E gives a pre-primitive section ωan of Ean for any choice
of the origin.
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632 A. Douai

3.2 Hertling and Manin’s construction

Let F = (M, E,�, R0, R∞,�, g) be a Frobenius type structure on a germ of complex
analytic manifold M , ω a �-flat section of E and χω the primitive map attached to ω. If F̃ is
a deformation of F , we will denote χ̃ω (resp. ϕ̃ω) the primitive map (resp. the period map)
attached to the flat extension of ω. We will say that a �-flat section of E is homogeneous if
it is an eigenvector of R∞. Frobenius structures are defined in [12, VII.2].

Theorem 3.2.1 (1) ([8, Theorem 2.5]) Assume that the Frobenius type structure F has
a pre-primitive section ω. Then F has a universal deformation. A deformation F̃ of
F is universal if and only if the primitive map (resp. period map) χ̃ω (resp. ϕ̃ω) is a
diffeomorphism (resp. an isomorphism).

(2) ([8, Theorem 4.5]) A flat, pre-primitive and homogeneous section of the Frobenius type
structure F defines, through the period map, a Frobenius structure on the base M̃ of
any universal deformation of F: M̃ is thus a Frobenius manifold.

(3) The Frobenius structures given by (2) on the bases of any two universal deformations
are isomorphic.

Proof (1) In brief, condition (GC) shows that one can construct deformations of the Fro-
benius type structure and condition (IC) is then used to show the universality of some
of them (see also Remark 6.1.4 below).

(2) It follows from (1) that F has a universal deformation F̃ = (M̃, Ẽ, �̃, R̃0, R̃∞, �̃, g̃).
Moreover, the period map associated with the flat extension of the pre-primitive form is
an isomorphism because the deformation is universal. One can thus carry the structures
defined on Ẽ onto 
M̃ , the sheaf of holomorphic vector fields on M̃ , and gets, by
definition, a (a priori nonhomogeneous) Frobenius structure on M̃ . If moreover the
pre-primitive form is homogeneous, its flat extension is also homogeneous because
R∞ carries flat sections onto flat sections: this gives the homogeneity of the Frobenius
structure. This makes M̃ a Frobenius manifold.

(3) Let F̃ and F̃ ′ be two universal deformations of F , with bases M̃ and M̃ ′, χ̃ω (resp. ϕ̃ω)
and χ̃ ′

ω (resp. ϕ̃′
ω) the respective primitive (resp. period) maps : these are diffeomor-

phisms (resp. isomorphisms). Write χ̃ω = χ̃ ′
ω ◦ ψ . Then ϕ̃ω = ϕ̃′

ω ◦ Tψ where

Tψ : 
M̃ → 
M̃ ′

is the linear tangent map: it is an isomorphism which carries the structures from 
M̃
onto 
M̃ ′ . ��

Example 3.2.2 A Frobenius type structure (E, R0, R∞, g) on a point has a universal defor-
mation if R0 is regular. This result was already known by B. Malgrange [11]. One gets a
Frobenius structure on the base of any universal deformation of a regular Frobenius type
structure if moreover ω is homogeneous. This has been independently shown by B. Dubrovin
[6].

4 Frobenius type structures and Laurent polynomials

We explain here, and it is the first step, how to attach a Frobenius type structure to any
convenient and nondegenerate Laurent polynomial.
Until the end of this paper, f will denote a convenient and nondegenerate Laurent polynomial
defined on U .
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4.1 Subdiagram deformations

If f has a finite number of critical points, µ( f ) will denote its global Milnor number, that is
the sum of the Milnor numbers at its critical points. One attaches to f its Newton polyhedron
and an increasing filtration N• on K , indexed by Q and normalized such that f ∈ N1 K (see
[9], we keep here the notations of [2]): this is the Newton filtration. This filtration induces a
Newton filtration N• on �n(U ) such that du/u ∈ N0�

n(U ). Define

N<1 K := ∪α<1NαK ,

which is a finite dimensional C-vector space, and ν := dimC N<1 K . Let

F : U × C
r → C

be the deformation of f defined by

F(u, x) = f (u)+
r∑

i=1

xi gi (u),

the gi ’s being Laurent polynomials.

Definition 4.1.1 (1) A Laurent polynomial g is subdiagram if g ∈ N<1 K .
(2) F is a subdiagram deformation of f if the Laurent polynomials gi , i = 1, . . . , r , are

subdiagram.
(3) The subdiagram deformation F is injective if the gi ’s are C-linearly independent, maxi-

mal if it is injective and if r = ν and surjective if (g1, . . . , gr ) is a lattice in A f , that is
if every element in A f can be written as (the class of ) a polynomial in g1, . . . , gr with
coefficients in C.

Remark 4.1.2 Let Fmax
1 and Fmax

2 be two maximal subdiagram deformations. Then Fmax
1 is

surjective if and only if Fmax
2 is so. In particular, if a maximal subdiagram deformation is

surjective then any maximal subdiagram deformation will be so.

4.2 The Brieskorn lattice of a subdiagram deformation

Let F be a subdiagram deformation of f , G0 (resp. G) the (dual) Fourier–Laplace transform
of the Brieskorn lattice (resp. of the Gauss–Manin system) of F , Go

0 (resp. Go) the one of f ,
see [4, Sect. 2.c]. By the very definition, one has

Go
0 = �n(U )[θ ]

(θd − d f ∧)�n−1(U )[θ ] ,

G0 = �n(U )[x, θ ]
(θdu − du F∧)�n−1(U )[x, θ ] ,

where the notation du means that the differential is taken with respect to u only,

G = �n(U )[x, θ, θ−1]
(θdu − du F∧)�n−1(U )[x, θ, θ−1]

and

Go = �n(U )[θ, θ−1]
(θd − d f ∧)�n−1(U )[θ, θ−1] .
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634 A. Douai

G0 is a C[x, θ ]-module and Go
0 is a C[θ ]-module. One defines a connection ∇ on G putting,

for ω ∈ �n(U )[x],
θ2∇θ (ωθ p) = Fωθ p + pωθ p+1

and

∇∂x j
(ωθ p) = ∂x j (ω)θ

p − ∂F

∂x j
ωθ p−1.

Notice that G0 is stable under θ2∇θ . One defines in the same way the Brieskorn lattice Ga
0

and the Gauss–Manin system Ga of Fa := F(., a).
Recall that the spectrum of (Go

0,Go) is the set of the µ( f ) rational numbers (α1, . . . , αµ)

such that

�(i |αi = α) = dimC

Nα�
n(U )

(d f ∧�n−1(U )) ∩ Nα�n(U )+ N<α�n(U )
.

Theorem 4.2.1 (1) µ( f ) < +∞ and Go
0 is a free C[θ ]-module of rank µ( f ).

(2) The Brieskorn lattice G0 of any subdiagram deformation F of f is free, of rank µ( f ),
over C[x, θ ].

(3) Let F be a subdiagram deformation of f . For any value a of the parameter, one has
µ(Fa) = µ( f ) and the spectrum of (Ga

0,Ga) is equal to the one of (Go
0,Go).

Proof From [9], one gets µ( f ) < +∞ because f is convenient and nondegenerate. The
remaining assertions of (1) and (2) follow from the division theorem of Kouchnirenko, as
stated in [4, Lemma 4.6]: see [4, Remark 4.8] for (1) and [2, Proposition 2.2.1] for (2). Let
us show (3): if f is convenient and nondegenerate, Fa is so and the Newton polyhedra of f
and Fa are the same : thus, the first assertion follows also from [9]. If

∑
i ai ui

∂ f
∂ui

∈ NαK
one may assume, because of the division theorem quoted above, that ai ∈ Nα−1 K . Since the
g j ’s are subdiagram, one gets ui

∂g j
∂ui

∈ N<1 K . It follows that

(d f ∧�n−1(U )) ∩ Nα + N<α = (d Fa ∧�n−1(U )) ∩ Nα + N<α.

This gives the second assertion. ��
4.3 The canonical Frobenius type structure of a subdiagram deformation

Assume, and it is the starting point, that one has solved the Birkhoff problem for Go
0, that

is that one has found a basis εo = (εo
1, . . . , ε

o
µ) (we put here µ = µ( f )) of Go

0 over C[θ ],
adapted to the microlocal Poincare duality So (see [15], [5, p. 9] and also [2, Paragraph 3.3]),
in which the matrix of the Gauss–Manin connection takes the form

−(τ Ao
0 + A∞)

dτ

τ

(we put τ := θ−1). This means that one can extend Go
0 to a trivial bundle on P

1 equipped
with a meromorphic connection with logarithmic poles along τ = 0 and poles of order 1
along τ = ∞. One gets, using Sect. 2.2.2, a Frobenius type structure (Eo, Ro

0 , R∞, go) on
a point where

• Eo = Go
0/θGo

0 = �n(U )/d f ∧�n−1(U ),
• Ro

0 (resp. R∞) is the endomorphism of Eo whose matrix is Ao
0 (resp. A∞) in the basis

induced by εo.

It follows from Sect. 4.2 that Ro
0 is the multiplication by f on Eo.
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In this paper, we will always consider the canonical solution of the Birkhoff problem given
by M. Saito’s method [15], [4, Appendix B], [3, Sect. 6]. To any convenient and nondegenerate
Laurent polynomial f , one attaches in this way a canonical Frobenius type structure on a
point. The endomorphism R∞ is in particular semisimple and its eigenvalues run through the
spectrum of (Go

0,Go). The basis εo is homogeneous, that is R∞(εo
i ) = αiε

o
i for all i , and

we order εo such that

α1 ≤ · · · ≤ αµ.

Since f is a convenient and nondegenerate Laurent polynomial, one has moreover εo
1 = [ du

u ]
where [ ] denotes the class in Go

0, α1 = 0 < α2 (the multiplicity of α1 in the spectrum is
equal to 1) and αµ = n > αµ−1 (see [4, 4.d]).

Theorem 4.3.1 Let F be a subdiagram deformation of f and

E = G0/θG0 = �n(U )[x]/du F ∧�n−1(U )[x].
The construction in Sect. 2.2.2 attaches to the canonical solution of the Birkhoff problem for
Go

0 a unique Frobenius type structure

Fo = (Ar , E,�, R0, R∞,�, g)

such that

i∗{0}Fo = (Eo, Ro
0 , R∞, go).

Moreover, for any value a of the parameter, one has

i∗{a}Fo = (Ea, Ra
0 , R∞, ga),

(Ea, Ra
0 , R∞, ga) denoting the canonical Frobenius type structure attached to Fa := F(., a).

Proof It follows from [2, Corollary 3.1.3] that there exists a basis ε = (ε1, . . . , εµ) of G0

over C[x, θ ] such that:

1. the matrix of the connection ∇ in this basis takes the form

−(τ A0(x)+ A∞)
dτ

τ
+ τC(x),

where C(x) = ∑r
i=1 C (i)(x)dxi . The matrix A0(x) represents the multiplication by F

on G0/τ
−1G0 in the basis induced by ε. Its coefficients belong to C[x]. The matrix C (i)

represents the multiplication by −gi on G0/τ
−1G0. Its coefficients belong also to C[x].

Last, the matrix A∞ is constant.
2. The restriction of ε to the zero value of the parameters is equal to εo, the canonical

solution of the Birkhoff problem for Go
0.

The unicity of such a basis is classical (see [11] or [12, p. 209]). Now one gets the desired
Frobenius type structure Fo using the results of Sect. 2.2.2. The construction in [2] shows
also that the restriction of the solution ε to any value a of the parameter is the canonical
solution of the Birkhoff problem for Ga

0. This gives the last assertion. ��
Definition 4.3.2 We will say that the Frobenius type structure Fo constructed in
Theorem 4.3.1 is the canonical Frobenius type structure attached to the subdiagram
deformation F .

In the notation Fo, the index o recalls the initial data (that is, f ). More generally, one attaches
in this way a Frobenius type structure to any (not necessarily the canonical one) solution of
the Birkhoff problem for Go

0.
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4.4 Comparison of the canonical Frobenius type structures after a change of initial
condition

Let F be a subdiagram deformation of f and (Ea, Ra
0 , R∞, ga) be the canonical Frobenius

type structure on a point attached to Fa = F(., a). Let us also consider the subdiagram
deformation of Fa defined by

(u, x) 	→ F(u, x + a).

Theorem 4.3.1 attaches to Fa a Frobenius type structure on A
r

Fa = (Ar , E,�, R0, R∞,�, g),

where

E := �n(U )[x]
du F(u, x + a) ∧�n−1(U )[x]

and such that

i∗{0}Fa = (Ea, Ra
0 , R∞, ga).

Let ρa be the map defined by ρa(x) = x + a.

Proposition 4.4.1 For any a one has Fa = ρ∗
a Fo.

Proof Follows from the unicity given by Theorem 4.3.1. ��
In other words, the matrices attached by Lemma 2.1.2 to the Frobenius type structures invol-
ved are related by a translation.

4.5 Comparison of the canonical Frobenius type structures attached to two different
subdiagram deformations

We now compare the canonical Frobenius type structures attached to two different subdiagram
deformations.

Proposition 4.5.1 (1) Let Fmax and Gmax be two subdiagram maximal deformations of f ,
F

max
o and G

max
o the canonical Frobenius type structures attached to Fmax and Gmax by

Theorem 4.3.1. Then F
max
o and G

max
o are isomorphic.

(2) Let Fo be the canonical Frobenius type structure attached to an injective subdiagram
deformation F, G

max
o the canonical Frobenius type structure attached to a maximal

subdiagram deformation Gmax. Then Fo is induced by G
max
o : there exists a map � :

A
r → A

ν such that Fo = �∗
G

max
o .

Proof Write

Fmax(u, x) = f (u)+
ν∑

i=1

xi gi

and

Gmax(u, x) = f (u)+
ν∑

i=1

xi g
′
i .
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Since Fmax and Gmax are maximal, (gi ) and (g′
i ) are two bases of N<1 K and there exists

independent linear forms L1, . . . , Lν such that

Gmax(u, x) = f (u)+
ν∑

i=1

Li (x1, . . . , xν)gi .

Define the map � by

�(x1, . . . , xν) = (L1(x1, . . . , xν), . . . , Lν(x1, . . . , xν)).

Then G
max
o = �∗

F
max
o . This shows (1) and (2) follows from (1). ��

4.6 Good subdiagram deformations

We define in this section a class of distinguished subdiagram deformations. We will use
these deformations in order to construct global deformations of the canonical Frobenius type
structures along the subdiagram polynomials (see Sect. 6.2). If F is a subdiagram deformation
of f , let ε = (ε1, . . . , εµ) be the canonical solution of the Birkhoff problem for G0 given
by the proof of Theorem 4.3.1. Recall that R∞(εi ) = αiεi for some rational numbers αi .
We order ε as in the beginning of Sect. 4.3. Let Fo be the canonical Frobenius type structure
attached to F : we thus have a map

� : E → �1(Ar )⊗ E .

Write � = ∑
i �

(i)dxi . By definition, the �(i)’s are endomorphisms of E .

Definition 4.6.1 We will say that a subdiagram deformation F is good if F is injective and
if, for all i ,

−�(i)(ε1) = εi +
∑

j<i

a j
i (x)ε j ,

where a j
i ∈ C[x].

Proposition 4.6.2 There exist good (resp. good and maximal) subdiagram deformations.

We will denote a good (resp. a good and maximal) subdiagram deformation by Fgood (resp.
Fgood,max).

Proof It is enough to work on the fiber above 0: indeed, if −�(i)(εo
1) = εo

i for all i one gets

−�(i)(ε1) = εi +
∑

j<i

a j
i (x)ε j

because, the deformation being subdiagram, the principal parts are constant (see [2]). Define,
if R∞(εo

i ) = αiε
o
i ,

�α :=
∑

αi ≤α
Cεo

i .

By construction, one has (see [4, Appendix B] or [3, Paragraph 6])

�α

�<α

= grN
α Eo,
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where Eo = �n(U )/d f ∧�n−1(U ) and N• is the Newton filtration induced on Eo. If α < 1,
it follows from [4, Lemma 4.6] that

grN
α Eo = grN

α �
n(U ).

Since N<0�
n(U ) = �<0 = 0, one deduces that

Nα�
n(U ) = �α

for all α < 1. This shows two things : first, one has αi < 1 for all i ∈ {1, . . . , ν} and second,
given εo

i such that αi < 1, there exists a unique subdiagram Laurent polynomial gi such that
[

gi
du

u

]
= εo

i .

Then, for r ≤ ν,

Fgood(u, x) = f (u)+
r∑

i=1

xi gi

is clearly injective and is a good subdiagram deformation because �(i) is the multiplication
by −gi and εo

1 = [du/u]. The subdiagram deformation

Fgood,max(u, x) = f (u)+
ν∑

i=1

xi gi

is good and maximal. ��

Let F
good
o (resp. F

good,max
o ) be the canonical Frobenius type structure attached to the good

(resp. to the good and maximal) subdiagram deformation Fgood (resp. Fgood,max).

Lemma 4.6.3 (1) Assume that there exist subdiagram Laurent polynomials g1, . . . , gr such
that (g1, . . . , gr ) is a lattice in A f and let Fgood,max be a good and maximal subdiagram
deformation. Then Fgood,max is surjective.

(2) F
good,max
o is isomorphic to the canonical Frobenius type structure attached to any maxi-

mal subdiagram deformation and it induces the canonical Frobenius type structure
attached to any injective subdiagram deformation.

Proof (1) Follows from Remark 4.1.2 and (2) follows from Proposition 4.5.1 because
Fgood,max is a maximal subdiagram deformation. ��

5 Pre-primitive forms of a canonical Frobenius type structure

Let f be a convenient and nondegenerate Laurent polynomial,

F(u, x) = f (u)+
r∑

i=1

xi gi

be a subdiagram deformation of f and Fo = (Ar , E,�, R0, R∞,�, g) be the canonical
Frobenius type structure on A

r attached to F .
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5.1 The section ω

Let ε = (ε1, . . . , εµ) be the ordered solution of the Birkhoff problem for G0, as in Sect. 4.6.

Proposition 5.1.1 One has ε1 = [ du
u ] where [ ] denotes the class in G0. In particular, the

class of du
u in E is �-flat and homogeneous, i.e. an eigenvector of R∞.

Proof Let V• be the Malgrange-Kashiwara filtration along τ = 0 of the Gauss–Manin
system G of the subdiagram deformation F , V•G0 its trace on G0. In the convenient and
nondegenerate case, this filtration is equal to the Newton filtration (up to a shift, see [2,
Proposition 2.3.3]). It follows from [2, Proposition 2.3.1] that Vα1 G0 is a free C[x]-module
and, from [3, Proposition 7.0.2], that every basis of Vα1 G0 is a part of a solution of the
Birkhoff problem for G0. Now, Vα1 G0 is of rank 1 over C[x] (for all a the C-vector space
Vα1 Ga

0 is 1-dimensional because Fa is a convenient and nondegenerate Laurent polynomial,
see [4, 4.d]), ε1 is a basis of it and du

u ∈ Vα1 G0. Notice that, once again because Fa is a
convenient and nondegenerate Laurent polynomial, εa

1 is equal to the class of the form du/u
in Ga

0 for all a [4, 4.d]. If [du/u] = p(x)ε1 in G0, we deduce from this that p(x) = 1 for
all x . ��
Notation 5.1.2 Until the end of this paper, ω will denote the class of du

u in E .

5.2 Conditions (IC) and (GC) for ωo

Choose an origin, say 0. We have

Eo = E/(x)E = �n(U )/d f ∧�n−1(U )

and ωo denotes the class of du
u in Eo. Conditions (IC) and (GC) for ωo are defined in 3.1.7.

Lemma 5.2.1 (1) ωo satisfies (IC) if and only if the classes of g1, . . . , gr are linearly
independent in A f .

(2) ωo satisfies (GC) if and only if every element of A f can be written as (the class of) a
polynomial in g1, . . . , gr , f with coefficients in C.

Proof By definition (see Sect. 4.2), one has Ro
0(ω

o) = [ f du
u ] and −�o

∂xi
(ω) = [gi

du
u ] where

[ ] denotes the class in Eo. ��
The following proposition justifies Definition 4.1.1:

Proposition 5.2.2 (1) Assume that the deformation F is injective. Then ωo satisfies (IC).
(2) Assume that the deformation F is surjective. Then ωo satisfies (GC).

Proof Let us show (1): it is enough to show that the classes of g1, . . . , gr in A f are linearly
independent. But this follows from the conditions g j ∈ Nα j K with α j < 1 for all j : indeed,
assume that there exist complex numbers α1, . . . , αr such that

r∑

j=1

α j g j =
n∑

i=1

bi ui
∂ f

∂ui
.

One can choose, using [4, Lemma 4.6], the bi ’s such that bi ∈ Nα−1 K where α := max jα j .
We then get bi = 0 for all i because α < 1. Moreover, the g j ’s are linearly independent in
K because the deformation F is injective: this shows that αi = 0 for all i . (2) is clear. ��
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Example 5.2.3 Assume that the injective deformation F contains the monomials

u1, . . . , un, u−1
1 , . . . , u−1

n .

Then ωo satisfies (I C) and (GC). Notice that, often, the monomials 1/u1, . . . , 1/un are
equal, in A f , to a (positive) power of the monomials u1, . . . , un : in this case, the condition
“F contains the monomials u1, . . . , un” is enough to get the condition (GC) for ωo.

Lemma 5.2.4 Assume that the deformation F is injective. Then ωa satisfies (IC) for any
choice of origin a.

Proof It is enough to show that the classes of g1, . . . , gr in AFa are linearly independent.
But one can repeat the proof of the previous proposition, because Fa is convenient and
nondegenerate and because the Newton polyhedra (and hence the Newton filtrations) of f
and Fa are the same. ��
5.3 The canonical pre-primitive form

Le F
an
o be the analytization of the Frobenius type structure Fo (see Remark 3.1.8), F

an
o,0 its

germ at 0.

Proposition 5.3.1 (1) Assume that the subdiagram deformation F is injective and surjec-
tive. Then ωan is a pre-primitive section of F

an
o,0.

(2) Assume that the subdiagram deformation F is injective. Then, the section ω of Fo

satisfies (I C)gl . If moreover F contains the monomials u1, . . . , un, u−1
1 , . . . , u−1

n then
ω satisfies also (GC)gl andωan is a pre-primitive section of the Frobenius type structure
F

an
o for any choice of the origin in C

r .

Proof (1) follows from Proposition 5.2.2. A section of the kernel of the period map ϕω is
given by a finite number of polynomials that vanishes everywhere by Lemma 5.2.4. This
shows the first assertion of (2). With the given assumption, ω satisfies of course (GC)gl and
the results about ωan are then clear. ��

6 Deformations and universal deformations of the canonical Frobenius
type structure

We keep here the situation and the notations of Sect. 5.

6.1 Deformations of the canonical Frobenius type structure

Let C(x), B0(x) and B∞ be the matrices attached to Fo by Lemma 2.1.2. Recall the conditions
(GC)gl and (I C)gl for ω, given in Definition 3.1.7.

Lemma 6.1.1 Assume that ω satisfies (GC)gl . Let f11, . . . , fµ1 be elements of C[x]{y}
(resp. O(Cr ){y}), y ∈ C, such that fi1(x, 0) = 0 for i = 1, . . . , µ. Then there exists a
unique t-uple of matrices

(C(x, y), B0(x, y), B∞)

such that

(1) the coefficients of C(x, y) and B0(x, y) belong to C[x]{y} (resp. O(Cr ){y}),
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(2) C(x, 0) = C(x), B0(x, 0) = B0(x) and ∂ fi1
∂y (x, y) = Di1(x, y) if

C(x, y) =
r∑

i=1

C (i)(x, y)dxi + D(x, y)dy,

(3) the relations of Lemma 2.1.2 are satisfied.

Proof See [8, Theorem 2.5]. It remains to show that the coefficients of C(x, y) and B0(x, y)
belong to C[x]{y} (resp. O(Cr ){y}), but this follows from the fact that the coefficients of
C(x) and B0(x) belong to C[x] by Theorem 4.3.1 and from the condition (GC)gl . ��
Example 6.1.2 Assume that f11(x, y) = y and fi1(x, y) = 0 for i = 2, . . . , µ. Lemma 2.1.2
gives

C (i)
j1 (x, y) = C (i)

j1 (x)

for all i and for all j , D11(x, y) = 1 and D j1(x, y) = 0 if j �= 1.

By induction, one shows that Lemma 6.1.1 remains true if y = (y1, . . . , y�) ∈ C
�.

Corollary 6.1.3 Assume that ω satisfies (GC)gl . Then,

(1) for any choice of functions

f11, . . . , fµ1 ∈ O(Cr ){y1, . . . , y�}
such that fi1(x, 0) = 0 there exists a unique deformation

F̃
an
o = (Cr × (C�, 0), Ẽ, �̃, R̃0, R̃∞, �̃, g̃)

on C
r × (C�, 0) of the canonical Frobenius type structure F

an
o .

(2) Any deformation of F
an
o on C

r × (C�
′
, 0) can be obtained as in (1).

Proof For (1), it remains to show the assertion on the metric g̃: g̃ is the unique �̃-flat metric on
Ẽ extending g. Starting with a basis adapted to g, and keeping the notations of Lemma 6.1.1,
it suffices to show that if the initial data are symmetric, then the matrices C(x, y) and B0(x, y)
are so : one can argue by induction as in the proof of Lemma 6.1.1 (see [10, Corollary 1.17],
[8, Lemma 3.2] and also [2, Paragraph 3.3]). Let us show (2): let F̆

an
o be a deformation of F

an
o

on C
r × (C�

′
, 0),

χ̆ωan : C
r × (C�

′
, 0) → C

µ, (9)

(x, y) 	→ (�11(x, y), . . . , �µ1(x, y)) (10)

its primitive map (attached to the flat extension of ωan). One puts fi1(x, y) = �i1(x, y) −
�i1(x, 0). ��
Remark 6.1.4 (Local deformations of the canonical Frobenius type structure) Assume that
ωo satisfies (GC) for the origin 0. One gets in the same way deformations F̃

an
o,0 of F

an
o,0 :=

C{x} ⊗ Fo. The functions fi1 now belong to C{x, y} and the coefficients of the matrices
involved are holomorphic. This is the setting of [8]. If moreover ωo satisfies (IC), one can
choose the fi1’s such that χ̃ωan , the primitive map attached to F̃

an
o,0, is (at least locally)

invertible: F̃
an
o,0 is then a universal deformation of F

an
o,0. This is precisely what gives [8, p. 123].

In particular, and because of Proposition 5.2.2, the canonical Frobenius type structure attached
to an injective and surjective subdiagram deformation of f has a universal deformation F̃

an
o,0.

In this situation, a deformation F̆
an
o,0 of F

an
o,0 is induced from F̃

an
o,0 by the map ψ = χ̃−1

ωan ◦ χ̆ωan

where χ̆ωan is the primitive map attached to F̆
an
o,0.
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Let a ∈ C
r and ρa be the map defined by ρa(x, y) = (x + a, y). From Proposition 4.4.1

we get

Corollary 6.1.5 Assume that ω satisfies condition (GC)gl . Let F̃
an
o be the deformation of

F
an
o given by Corollary 6.1.3 for a choice of functions fi1. Then ρ∗

a F̃
an
o is the deformation of

the Frobenius type structure F
an
a given by Corollary 6.1.3 for the functions fi1 ◦ ρa.

6.2 Semi-global universal deformations of the canonical Frobenius type structure

We globalize here the results of Remark 6.1.4 along C
r (i.e. along the subdiagram monomials).

We give first the analog of definition 2.3.1, (3):

Definition 6.2.1 Let F̃
an
o be a deformation of F

an
o on C

r × (C�, 0) as in Corollary 6.1.3. We
say that F̃

an
o is a semi-global universal deformation of F

an
o if, for any other deformation F̃

an′
o

on C
r × (C�

′
, 0) of F

an
o , there exists a unique map

� : C
r × (C�

′
, 0) → C

r × (C�, 0),

inducing the identity on C
r and such that �∗

F̃
an
o = F̃

an′
o .

We show first that such semi-global universal deformations exist if F is a good subdiagram
deformation (see Sect. 4.6).

Lemma 6.2.2 Let F
good
o be the canonical Frobenius type structure attached to a good sub-

diagram deformation of f . Then:

(1) the primitive map χω attached to F
good
o takes the form

χω(x1, . . . , xr ) = (−x1 + G1(x2, . . . , xr ),−x2 + G2(x3, . . . , xr ), . . . ,

−xr−1 + Gr−1(xr ),−xr , 0, . . . , 0),

where G1, G2,…, Gr−1 are suitable polynomial functions.
(2) Assume moreover that ω satisfies (GC)gl . Choose fi1(x, y) = 0 for i = 1, . . . , r ,

fi1(x, y) = yi−r for i = r + 1, . . . , µ and let F̃
good,an
o be the deformation of F

good,an
o

given by Corollary 6.1.3. Its primitive map

χ̃ωan : C
r × (Cµ−r , 0) → C

r × (Cµ−r , 0)

takes the form

χ̃ωan (x1, . . . , xr , y1, . . . , yµ−r ) = (−x1 + G1(x2, . . . , xr ), . . . ,−xr−1

+Gr−1(xr ),−xr , y1, . . . , yµ−r )

and F̃
good,an
o is a semi-global universal deformation of F

good,an
o .

Proof (1) By definition of the good subdiagram deformations, we have, in G0,

−�(i)(ω) = εi +
∑

j<i

a j
i (x)ε j

for all i , with a j
i ∈ C[x]. Let � j1 be such that

d� j1(x) =
r∑

i=1

C (i)
j1 (x)dxi
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with the initial data � j1(0) = 0. One has d� j1(x) = 0 for j > r hence � j1(x) = 0 for
j > r . In the same way, one gets d�r1(x) = −dxr and

d� j1(x) = −dx j +
r∑

i= j+1

C (i)
j1 (x)dxi

for j = 1, . . . , r − 1. The result follows. Now (2) follows from (1) and Example 6.1.2. One
gets the universality as in Remark 6.1.4 (notice that χ̃−1

ωan is also polynomial in x). ��
Corollary 6.2.3 The canonical Frobenius type structure attached to a maximal subdiagram
deformation has semi-global universal deformations, if ω satisfies (GC)gl .

Proof Apply the previous Lemma to a good and maximal subdiagram deformation, which
exists by Proposition 4.6.2, and use Lemma 4.6.3 (2). ��
Finally, using Corollary 6.1.5, we get

Corollary 6.2.4 Let F be a maximal subdiagram deformation of f and assume that ω
satisfies (GC)gl . For any a ∈ C

r , the Frobenius type structure F
an
a has a semi-global universal

deformation of F̃
an
a satisfying

F̃
an
a = ρ∗

a F̃
an
o .

7 Application: construction of Frobenius manifolds

Let f be a convenient and nondegenerate Laurent polynomial, µ its global Milnor number,

F(u, x) = f (u)+
r∑

i=1

xi gi (u)

be a subdiagram deformation of f , Fo = (Ar , E,�, R0, R∞,�, g) be the canonical Frobe-
nius type structure attached to F by Theorem 4.3.1 and F

an
o its analytization. Let ω be the

class of du
u in E .

7.1 Local setting

We work in this section with punctual germs. Let F
an
o,0 be the germ of F

an
o at 0. The following

theorems show that one can equip (Cµ, 0) with a canonical Frobenius structure: (Cµ, 0) is
thus a Frobenius manifold.

Theorem 7.1.1 Assume that the subdiagram deformation F is injective and surjective.
Then:

(1) ωan is a �-flat and homogeneous section of Ean.
(2) ωan is pre-primitive for the origin 0.
(3) F

an
o,0 has a universal deformation F̃

an
o,0.

(4) The pre-primitive section ωan defines a Frobenius structure on the base of the universal
deformation F̃

an
o,0. The Frobenius structures obtained in this way on the bases of any

two universal deformations are isomorphic.

Proof (1) follows from Proposition 5.1.1, (2) from Proposition 5.2.2 and (3) from (2) and
Remark 6.1.4. Last, (4) follows from Theorem 3.2.1 (2) and (3). ��
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Let us show now that the Frobenius structures constructed in Theorem 7.1.1 do not depend
on the choice of the subdiagram deformations.

Lemma 7.1.2 Let F (resp. G) be an injective and surjective subdiagram deformation of f ,
Fo (resp. Go) be the canonical Frobenius type structure attached to F (resp. G). The universal
deformations F̃

an
o,0 of F

an
o,0 and G̃

an
o,0 of G

an
o,0 given by Theorem 7.1.1 are isomorphic.

Proof Extend F (resp. G) to a maximal deformation Fmax (resp. Gmax): this is always
possible because F and G are injective. It follows from Proposition 4.5.1 that the respective
canonical Frobenius structures F

max
o and G

max
o are isomorphic. On the other hand, F̃an

o,0 induces

F
max,an
o,0 via a (unique) map ψ because F

max,an
o,0 is a deformation of F

an
o,0 and because F̃

an
o,0 is a

universal deformation of F
an
o,0. One has (see Remark 6.1.4)

χ̃ωan ◦ ψ = χmax
ωan ,

χ̃ωan (resp. χmax
ωan ) denoting the primitive map attached to F̃

an
o,0 (resp. F

max,an
o,0 ). By universality,

χ̃ωan is a diffeomorphism and, by Proposition 5.2.2, χmax
ωan is an immersion. One deduces from

this that ψ is an immersion. Finally, F̃
an
o,0 is a universal deformation of F

max,an
o,0 and also a

universal deformation of G
max,an
o,0 . Because G̃

an
o,0 is also a universal deformation of G

max,an
o,0 ,

we deduce that F̃
an
o,0 and G̃

an
o,0 are isomorphic. ��

Theorem 7.1.3 Let F and G be two injective and surjective subdiagram deformations of f ,
Fo (resp. Go) be the canonical Frobenius type structure attached to F (resp. G). Then:

(1) ωan is a �-flat and homogeneous section of the bundles associated with Fo and Go.
(2) ωan is pre-primitive for the origin 0.
(3) F

an
o (resp. Gan

o ) has a universal deformation F̃
an
o (resp. G̃an

o ). F̃an
o and G̃

an
o are isomorphic.

(4) The Frobenius structures defined by the pre-primitive form ωan according to Theo-
rem 7.1.1 do not depend, up to isomorphism, on the choice of the subdiagram deforma-
tions F and G.

Proof Because of the previous Theorem, it is enough to show (3) and (4): (3) follows from
the Lemma above and (4) is then clear (see Theorem 3.2.1). ��
This shows Theorem 1 in the introduction.

7.2 Globalization

Recall that Fa denotes the canonical Frobenius type structure attached to Fa = F(., a),
a ∈ C

r , and that ρa is the map defined by ρa(x, y) = (x +a, y) for (x, y) ∈ C
r × (Cµ−r , 0).

Theorem 7.2.1 Assume that the subdiagram deformation F is injective.

(1) ω is a �-flat, homogeneous section of E.
(2) Assume moreover that ω satisfies (GC)gl . If F is a maximal subdiagram deformation

then F
an
o has a semi-global universal deformation F̃

an
o and, for any a ∈ C

r , F
an
a has a

semi-global universal deformation F̃
an
a satisfying F̃

an
a = ρ∗

a F̃
an
o . The period map oϕ̃ωan

(resp. a ϕ̃ωan ) attached to F̃
an
o (resp. F̃

an
a ) defines a Frobenius structure on C

r ×(Cµ−r , 0).
If �(x, y) is the matrix of oϕ̃ωan (in the obvious bases) then �(x + a, y) is the one of
a ϕ̃ωan .

Proof (1) Follows from Proposition 5.1.1 and (2) from Corollary 6.2.3, Corollary 6.2.4 and
Theorem 3.2.1. ��
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Corollary 7.2.2 Assume thatω satisfies (GC)gl for the injective subdiagram deformation F.

(1) The Frobenius structure on (Cµ, 0), attached by Theorem 7.1.1 to the convenient and
nondegenerate Laurent polynomial Fa = F(., a), a ∈ C

r , is obtained by an analytic
continuation of the one attached to f .

(2) For any injective subdiagram deformation G of f , the Frobenius structure on (Cµ, 0),
attached by Theorem 7.1.1 to the convenient and nondegenerate Laurent polynomial
Ga = G(., a), a ∈ C

r , is obtained by an analytic continuation of the one attached
to f .

Proof Because of Theorem 7.1.3 one may assume that F is a maximal subdiagram defor-
mation. Theorem 7.2.1 shows that ωan defines a Frobenius structure on C

r × (Cµ−r , 0)
whose germ at (0, 0) ∈ C

r × C
µ−r is isomorphic to the Frobenius structure given by Theo-

rem 7.1.1 because the germ at 0 of the semi-global universal deformation F̃
an
o considered in

Theorem 7.2.1 is isomorphic to the universal deformation given by Theorem 7.1.1 (3) (the
notation F̃

an
o,0 for both is then relevant). Now, if a ∈ C

r , the same process gives also a Frobe-
nius structure on (Cr , a)×(Cµ−r , 0), which thus can be seen as an analytic continuation from
(0, 0) to (a, 0) of the former one. The last assertion of Theorem 7.2.1 shows that this structure
gives the one obtained on (Cµ, 0) starting from Fa . This shows (1). Let us show (2): let G be
any injective subdiagram deformation of f . Without loss of generality, one may assume that
G is maximal. It follows from Proposition 4.5.1 that the canonical Frobenius type structures
attached to G and F (say, Go and Fo) satisfy Go = �∗

Fo where� is an isomorphism. Thus,
for any a ∈ C

r , Ga = �∗
Fa where � is also an isomorphism by Proposition 4.4.1 and (2)

follows from (1). ��
This shows Theorem 2 in the introduction.

8 By way of conclusion

Let f be a convenient and nondegenerate Laurent polynomial. Suppose first that the multi-
plication by f on A f is semisimple and regular (this case occurs in particular if the critical
values of f are distinct): after [6], one can attach to f a canonical Frobenius structure, which
is determined by a restricted set of data, obtained from the canonical solution of the Bir-
khoff problem for the Brieskorn lattice of f as defined in [4]. This is explained in [5] where
examples are given. This paper generalizes this result to any f , up to the existence of a lattice
in A f (of course, made with subdiagram Laurent polynomials).

Our recipe to construct Frobenius manifolds is the following:

(a) find M. Saito’s canonical solution of the Birkhoff problem for the Brieskorn lattice of
f (it exists, thanks to [4]),

(b) starting from a solution as in (a), solve, and this step is algebraic, the Birkhoff problem
for the Brieskorn lattice of an injective and surjective deformation of f (choose the
one which makes the computations as simple as possible, see below): this will give the
canonical Frobenius type structure (the initial condition),

(c) finally, use [8] to get a universal deformation of the Frobenius type structure given in
(b). We then get the desired canonical Frobenius structure with the help of the primitive
and homogeneous form ω.

In practice, the main difficulty is part (a): even if one computes a solution of the Birkhoff
problem for the Brieskorn lattice of f (in the nondegenerate and convenient case it can be
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done using Kouchnirenko’s division theorem and the relation between the V -filtration and
the Newton filtration, see [4, Sect. 4]), it can be hard to decide if it is the canonical one given
by M. Saito’s method or not, although it can be done in some concrete situations (see [5],
especially Proposition 5.2). In principle, (b) follows from (a) as shown in the example below.
Last notice that the process in part (c) is not algebraic and can be difficult to carry out.

How to compute an initial condition Fo, starting with a solution of the Birkhoff problem
for the Brieskorn lattice of f ? Here is an example. We will see that the multiplication by f
on A f is not regular: this example does not enter in the framework of [6]. All the following
computations can be done as in [5], using [4, Sect. 4]. Let f : C

∗ → C be defined by

f (u) = u−2 + u2.

One has µ( f ) = 4 and the spectrum of (Go
0,Go) is equal to (0, 1

2 ,
1
2 , 1). First, we compute

a solution of the Birkhoff problem for Go
0. Let εo

1 = [ du
u ], εo

2 = [ du
u2 ], εo

3 = [du], εo
4 = [udu]

where [ ] denotes the class in Go
0. Using the fact that d f = (− 2

u3 + 2u)du and the formulas

in Sect. 4.2, we find that the matrix of θ2∇∂θ in the basis

εo = (εo
1, ε

o
2, ε

o
3, ε

o
4)

of Go
0 over C[θ ] takes the form

Ao
0 + A∞θ,

where

Ao
0 =

⎛

⎜⎜⎝

0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

⎞

⎟⎟⎠ , A∞ =

⎛

⎜⎜⎝

0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

⎞

⎟⎟⎠ .

Notice that Ao
0 is not regular as its minimal polynomial is equal to (X − 2)(X + 2). In the

same way as in [5, Lemma 4.1], we put

So(εo
1, ε

o
4) = So(εo

2, ε
o
2) = So(εo

3, ε
o
3) ∈ C

∗

and So(εo
i , ε

o
j ) = 0 otherwise. This defines the duality So and we check that (Ao

0)
∗ = Ao

0
and A∗∞ + A∞ = I , where ∗ denotes the adjoint with respect to So. Notice now that (u) is a
lattice in A f : we choose the subdiagram deformation

F(u, x) = u−2 + u2 + xu

and we compute, starting from εo, a solution of the Birkhoff problem for G0, the Brieskorn
lattice attached to F . The matrix of the connection ∇ in the basis ε′ = (ε′1, ε′2, ε′3, ε′4), where

ε′1 =
[

du

u

]
, ε′2 =

[
du

u2

]
, ε′3 = [du], ε′4 = [udu]

([ ] denotes now the class in G0), takes the form
(

B0(x)

θ
+ B∞(x)

)
dθ

θ
+

(
C1(x)

θ
+ C2(x)

)
dx,
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where

B0(x) =

⎛

⎜⎜⎝

0 3x
2 0 2

0 0 2 x
2

3x
2 2 0 0

2 0 x
2 − x2

4

⎞

⎟⎟⎠ , B∞(x) =

⎛

⎜⎜⎝

0 0 0 0
0 1

2 0 0
0 0 1

2
x
4

0 0 0 1

⎞

⎟⎟⎠

and

C1(x) =

⎛

⎜⎜⎝

0 −1 0 0
0 0 0 −1

−1 0 0 0
0 0 −1 x

2

⎞

⎟⎟⎠ , C2(x) =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − 1

2
0 0 0 0

⎞

⎟⎟⎠ .

We get a flat basis (i.e. a solution of the Birkhoff problem for G0 as in the proof of Theo-
rem 4.3.1) putting

(ε1, ε2, ε3, ε4) = (ε′1, ε′2, ε′3, ε′4)P(x)

where

P(x) =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 x

2
0 0 0 1

⎞

⎟⎟⎠ .

In the basis ε = (ε1, ε2, ε3, ε4), the matrix of the connection ∇ takes the form
(

A0(x)

θ
+ A∞

)
dθ

θ
+ C(x)dx

θ
,

where A∞ = diag(0, 1/2, 1/2, 1). A duality S (a flat extension of So) is defined on G0 by

S (ε1, ε4) = S(ε2, ε2) = S(ε3, ε3) = So(εo
1, ε

o
4) ∈ C

∗

and S(εi , ε j ) = 0 otherwise. We check that A0(x)∗ = A0(x) and A∗∞ + A∞ = I , where ∗
denotes the adjoint with respect to S. Thanks to the proof of Theorem 4.3.1, we get an initial
condition Fo.

Notice that (u−1) is also a lattice in A f : if we start from the initial data given by the
deformation

G(u, x) = u−2 + xu−1 + u2

we obtain, thanks to Theorem 7.1.3, a Frobenius structure isomorphic to the one attached to
F . In other words, one has the choice to define the initial data, of course, the idea is to start
with a deformation F which makes the computations as simple as possible. Last, it follows
from Theorem 2 that the canonical Frobenius structure attached by Theorem 1 to the Laurent
polynomial

u−2 + 12u + u2

can be deduced from the one attached to f .
Let us finish by noticing that the results of this paper remain true, up to slightly

modifications and up to the existence of a canonical homogeneous pre-primitive form (this is
much more restrictive), if one considers convenient and nondegenerate polynomial
functions defined on U = C

n : one has to take care that N1 K does not always embed in
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648 A. Douai

A f . This is emphasized in [2, Sect. 4.2] and especially relevant in the quasi-homogeneous
case where the multiplication by f on A f is zero (and far from being semisimple and regu-
lar). An example is given in [2, Sect. 4.2.2]. The previous restrictions show the difficulties
that one has to overcome if one wants, and it is inevitable, to extend the results of this paper
to general regular tame functions, not necessarily convenient and nondegenerate.

Acknowledgments I thank C. Sabbah for many helpful discussions and the referee for his/her valuable
comments.
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